{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NumPy DataTypes"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. With the help of the np.array() function, create a 1-D array variable array_hw_1 with the numbers from 1 to 8 and display it on the screen."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1, 2, 3, 4, 5, 6, 7, 8])"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"array_hw_1 = np.array([1,2,3,4,5,6,7,8])\n",
"array_hw_1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.Check its type, shape and size. \n",
" (Hint : \"type\" is a Python function, while \"shape\" and \"size\" are attributes of the array) "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"numpy.ndarray"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(array_hw_1)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(8,)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"array_hw_1.shape"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"array_hw_1.size"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. Now, create a 2x4 2-D array, array_hw_2 with the same values & display it on screen. "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1, 2, 3, 4],\n",
" [5, 6, 7, 8]])"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"array_hw_2 = np.array([[1,2,3,4],[5,6,7,8]])\n",
"array_hw_2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. Find its type, shape, and size. "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"numpy.ndarray"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(array_hw_2)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(2, 4)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"array_hw_2.shape"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"array_hw_2.size"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5. Use square brackets to create a 3-D array with the same values as array_hw_2 and display it on screen."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[[1, 2, 3, 4],\n",
" [5, 6, 7, 8]]])"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"array_hw_3 = np.array([[[1,2,3,4],[5,6,7,8]]])\n",
"array_hw_3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6. Find its type, shape and size. \n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"numpy.ndarray"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(array_hw_3)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(1, 2, 4)"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"array_hw_3.shape"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"array_hw_3.size"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 7. Define a 2-D list list_hw_1 with the same values as array_hw_2 and display it on screen."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[[1, 2, 3, 4], [5, 6, 7, 8]]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list_hw_1 = [[1,2,3,4],[5,6,7,8]]\n",
"list_hw_1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 8. Find the length of this 2-D list. "
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(list_hw_1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 9. Fint the length of one of its sublists. "
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(list_hw_1[0])\n",
"#len(list_hw_1[1])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 10. Verify its type. "
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"list"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(list_hw_1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 11. Use the np.array() function to create an array out of list_hw_1 and display it on screen."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"array_hw_4 = np.array(list_hw_1)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1, 2, 3, 4],\n",
" [5, 6, 7, 8]])"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"array_hw_4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 12. Create two more variables and display them on screen:\n",
" A) A list which is the sum of the two sublists of list_hw_1;\n",
" B) An array which is the sum of the two subarrays of array_hw_4;\n",
" \n",
" (Hint: Use indexing to refer to the different sub-lists/arrays)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"list_sum = list_hw_1[0] + list_hw_1[1]"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"array_sum = array_hw_4[0] + array_hw_4[1]"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[1, 2, 3, 4, 5, 6, 7, 8]"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list_sum"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 6, 8, 10, 12])"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"array_sum"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 13. Find the square roots of all the elements in array_sum \n",
" (Hint: Use the np.sqrt() function)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2.44948974, 2.82842712, 3.16227766, 3.46410162])"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.sqrt(array_sum)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 13. Find the square roots of all the elements in list_sum \n",
" (Hint: Most NumPy functions are equipped to handle lists like ndarrays with the same shape)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"array([1. , 1.41421356, 1.73205081, 2. , 2.23606798,\n",
" 2.44948974, 2.64575131, 2.82842712])"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.sqrt(list_sum)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 14. Use np.genfromtxt() to import the \"Lending-Company-Total-Price.csv\" file as strings and display its contents.\n",
" You can open the file in a text editor like Notepad++ to check its delimiter. "
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([['LoanID', 'StringID', 'Product', ..., 'Location', 'Region',\n",
" 'TotalPrice'],\n",
" ['1', 'id_1', 'Product B', ..., 'Location 2', 'Region 2', '16600'],\n",
" ['2', 'id_2', 'Product B', ..., 'Location 3', '', '16600'],\n",
" ...,\n",
" ['413', 'id_413', 'Product B', ..., 'Location 135', 'Region 1',\n",
" '16600'],\n",
" ['414', 'id_414', 'Product C', ..., 'Location 200', 'Region 6',\n",
" '15600'],\n",
" ['415', 'id_415', 'Product A', ..., 'Location 8', 'Region 2',\n",
" '22250']], dtype=' skip_header and usecols parameters to only take the numerical data from the file. Then, let's see how the inputs change if we alter the datatype argument to:\n",
"\n",
" A) The default (not specify it)\n",
" B) 32-bit integers (np.int32)\n",
" C) 32-bit floats (np.float32)\n",
" D) 64-bit complex numbers (np.complex64)\n",
" E) Unicode (np.unicode)\n",
" F) Objects (np.object)\n",
" G) None"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1.0000e+00, 1.6600e+04],\n",
" [2.0000e+00, 1.6600e+04],\n",
" [3.0000e+00, 1.5600e+04],\n",
" [4.0000e+00, 1.6600e+04],\n",
" [5.0000e+00, 2.0250e+04],\n",
" [6.0000e+00, nan],\n",
" [7.0000e+00, 2.0250e+04],\n",
" [8.0000e+00, 1.6600e+04],\n",
" [9.0000e+00, 2.2250e+04],\n",
" [1.0000e+01, 2.0250e+04],\n",
" [1.1000e+01, 1.6600e+04],\n",
" [1.2000e+01, 2.0250e+04],\n",
" [1.3000e+01, 1.6600e+04],\n",
" [1.4000e+01, 2.0750e+04],\n",
" [1.5000e+01, 2.2250e+04],\n",
" [1.6000e+01, 1.6600e+04],\n",
" [1.7000e+01, 2.2250e+04],\n",
" [1.8000e+01, 1.6600e+04],\n",
" [1.9000e+01, 1.6600e+04],\n",
" [2.0000e+01, 5.4625e+04],\n",
" [2.1000e+01, 1.6600e+04],\n",
" [2.2000e+01, 2.2250e+04],\n",
" [2.3000e+01, 1.9250e+04],\n",
" [2.4000e+01, 1.5600e+04],\n",
" [2.5000e+01, 2.0250e+04],\n",
" [2.6000e+01, 2.2250e+04],\n",
" [2.7000e+01, 1.9250e+04],\n",
" [2.8000e+01, 6.9225e+04],\n",
" [2.9000e+01, 2.0250e+04],\n",
" [3.0000e+01, 1.6600e+04],\n",
" [3.1000e+01, 1.6600e+04],\n",
" [3.2000e+01, 1.6600e+04],\n",
" [3.3000e+01, 1.9250e+04],\n",
" [3.4000e+01, 1.6600e+04],\n",
" [3.5000e+01, 1.9250e+04],\n",
" [3.6000e+01, 1.6600e+04],\n",
" [3.7000e+01, 1.6600e+04],\n",
" [3.8000e+01, 1.6600e+04],\n",
" [3.9000e+01, 1.5600e+04],\n",
" [4.0000e+01, 1.6600e+04],\n",
" [4.1000e+01, 1.6600e+04],\n",
" [4.2000e+01, 1.6600e+04],\n",
" [4.3000e+01, 1.9250e+04],\n",
" [4.4000e+01, 1.5600e+04],\n",
" [4.5000e+01, 1.9250e+04],\n",
" [4.6000e+01, 1.6600e+04],\n",
" [4.7000e+01, 1.6600e+04],\n",
" [4.8000e+01, 1.6600e+04],\n",
" [4.9000e+01, 2.0250e+04],\n",
" [5.0000e+01, 2.2250e+04],\n",
" [5.1000e+01, 1.6600e+04],\n",
" [5.2000e+01, 2.0250e+04],\n",
" [5.3000e+01, 2.0250e+04],\n",
" [5.4000e+01, 1.6600e+04],\n",
" [5.5000e+01, 1.6600e+04],\n",
" [5.6000e+01, 1.6600e+04],\n",
" [5.7000e+01, nan],\n",
" [5.8000e+01, 1.6600e+04],\n",
" [5.9000e+01, 1.6600e+04],\n",
" [6.0000e+01, 1.6600e+04],\n",
" [6.1000e+01, 1.9250e+04],\n",
" [6.2000e+01, 1.5600e+04],\n",
" [6.3000e+01, 1.5600e+04],\n",
" [6.4000e+01, 2.0250e+04],\n",
" [6.5000e+01, 1.6600e+04],\n",
" [6.6000e+01, 2.2250e+04],\n",
" [6.7000e+01, 2.2250e+04],\n",
" [6.8000e+01, 2.0250e+04],\n",
" [6.9000e+01, 2.0250e+04],\n",
" [7.0000e+01, 1.6600e+04],\n",
" [7.1000e+01, 1.5600e+04],\n",
" [7.2000e+01, 1.6600e+04],\n",
" [7.3000e+01, 1.6600e+04],\n",
" [7.4000e+01, 2.2250e+04],\n",
" [7.5000e+01, 2.0750e+04],\n",
" [7.6000e+01, 2.2250e+04],\n",
" [7.7000e+01, 1.9250e+04],\n",
" [7.8000e+01, 2.0250e+04],\n",
" [7.9000e+01, 2.0250e+04],\n",
" [8.0000e+01, 2.0250e+04],\n",
" [8.1000e+01, 1.9250e+04],\n",
" [8.2000e+01, 1.6600e+04],\n",
" [8.3000e+01, 2.2250e+04],\n",
" [8.4000e+01, 2.0250e+04],\n",
" [8.5000e+01, 1.6600e+04],\n",
" [8.6000e+01, 1.9250e+04],\n",
" [8.7000e+01, 2.2250e+04],\n",
" [8.8000e+01, 1.6600e+04],\n",
" [8.9000e+01, 1.9250e+04],\n",
" [9.0000e+01, 1.6600e+04],\n",
" [9.1000e+01, nan],\n",
" [9.2000e+01, 2.0250e+04],\n",
" [9.3000e+01, 1.6600e+04],\n",
" [9.4000e+01, 1.6600e+04],\n",
" [9.5000e+01, 1.9250e+04],\n",
" [9.6000e+01, 1.6600e+04],\n",
" [9.7000e+01, 1.6600e+04],\n",
" [9.8000e+01, 2.2250e+04],\n",
" [9.9000e+01, 2.2250e+04],\n",
" [1.0000e+02, 1.6600e+04],\n",
" [1.0100e+02, 1.6600e+04],\n",
" [1.0200e+02, 1.9250e+04],\n",
" [1.0300e+02, 1.6600e+04],\n",
" [1.0400e+02, 2.2250e+04],\n",
" [1.0500e+02, 1.9250e+04],\n",
" [1.0600e+02, 1.6600e+04],\n",
" [1.0700e+02, 1.6600e+04],\n",
" [1.0800e+02, 1.9250e+04],\n",
" [1.0900e+02, 1.6600e+04],\n",
" [1.1000e+02, 2.2250e+04],\n",
" [1.1100e+02, 1.6600e+04],\n",
" [1.1200e+02, 1.5600e+04],\n",
" [1.1300e+02, 1.6600e+04],\n",
" [1.1400e+02, 2.0250e+04],\n",
" [1.1500e+02, 1.6600e+04],\n",
" [1.1600e+02, 1.9250e+04],\n",
" [1.1700e+02, 1.9250e+04],\n",
" [1.1800e+02, 1.9250e+04],\n",
" [1.1900e+02, 1.5600e+04],\n",
" [1.2000e+02, 2.2250e+04],\n",
" [1.2100e+02, 2.2250e+04],\n",
" [1.2200e+02, 1.6600e+04],\n",
" [1.2300e+02, 2.0250e+04],\n",
" [1.2400e+02, 1.6600e+04],\n",
" [1.2500e+02, 1.6600e+04],\n",
" [1.2600e+02, 2.0750e+04],\n",
" [1.2700e+02, 2.0250e+04],\n",
" [1.2800e+02, 1.6600e+04],\n",
" [1.2900e+02, 1.6600e+04],\n",
" [1.3000e+02, 1.6600e+04],\n",
" [1.3100e+02, 1.5600e+04],\n",
" [1.3200e+02, 1.6600e+04],\n",
" [1.3300e+02, 1.5600e+04],\n",
" [1.3400e+02, 1.9250e+04],\n",
" [1.3500e+02, 1.6600e+04],\n",
" [1.3600e+02, 1.6600e+04],\n",
" [1.3700e+02, 2.0250e+04],\n",
" [1.3800e+02, 1.9250e+04],\n",
" [1.3900e+02, 1.5600e+04],\n",
" [1.4000e+02, 1.6600e+04],\n",
" [1.4100e+02, 1.6600e+04],\n",
" [1.4200e+02, 1.6600e+04],\n",
" [1.4300e+02, 1.5600e+04],\n",
" [1.4400e+02, 1.6600e+04],\n",
" [1.4500e+02, 1.5600e+04],\n",
" [1.4600e+02, 1.9250e+04],\n",
" [1.4700e+02, 2.2250e+04],\n",
" [1.4800e+02, 2.0250e+04],\n",
" [1.4900e+02, 1.9250e+04],\n",
" [1.5000e+02, 2.2250e+04],\n",
" [1.5100e+02, 1.6600e+04],\n",
" [1.5200e+02, 2.2250e+04],\n",
" [1.5300e+02, 5.4625e+04],\n",
" [1.5400e+02, 5.4625e+04],\n",
" [1.5500e+02, 1.6600e+04],\n",
" [1.5600e+02, 2.2250e+04],\n",
" [1.5700e+02, 2.2250e+04],\n",
" [1.5800e+02, 2.2250e+04],\n",
" [1.5900e+02, 2.2250e+04],\n",
" [1.6000e+02, 1.5600e+04],\n",
" [1.6100e+02, nan],\n",
" [1.6200e+02, 1.6600e+04],\n",
" [1.6300e+02, 2.2250e+04],\n",
" [1.6400e+02, 2.0250e+04],\n",
" [1.6500e+02, 2.2250e+04],\n",
" [1.6600e+02, 1.6600e+04],\n",
" [1.6700e+02, 1.9250e+04],\n",
" [1.6800e+02, 2.0250e+04],\n",
" [1.6900e+02, 1.6600e+04],\n",
" [1.7000e+02, 2.0250e+04],\n",
" [1.7100e+02, 1.6600e+04],\n",
" [1.7200e+02, 1.6600e+04],\n",
" [1.7300e+02, 2.0250e+04],\n",
" [1.7400e+02, 2.0250e+04],\n",
" [1.7500e+02, 1.6600e+04],\n",
" [1.7600e+02, 2.0250e+04],\n",
" [1.7700e+02, 1.9250e+04],\n",
" [1.7800e+02, 1.6600e+04],\n",
" [1.7900e+02, 2.0750e+04],\n",
" [1.8000e+02, 2.0250e+04],\n",
" [1.8100e+02, 2.2250e+04],\n",
" [1.8200e+02, 1.6600e+04],\n",
" [1.8300e+02, 2.0250e+04],\n",
" [1.8400e+02, 2.0250e+04],\n",
" [1.8500e+02, 1.6600e+04],\n",
" [1.8600e+02, 2.0250e+04],\n",
" [1.8700e+02, 2.0750e+04],\n",
" [1.8800e+02, 1.6600e+04],\n",
" [1.8900e+02, 1.6600e+04],\n",
" [1.9000e+02, 2.2250e+04],\n",
" [1.9100e+02, 2.2250e+04],\n",
" [1.9200e+02, 2.2250e+04],\n",
" [1.9300e+02, 1.6600e+04],\n",
" [1.9400e+02, 5.4625e+04],\n",
" [1.9500e+02, 1.6600e+04],\n",
" [1.9600e+02, 2.2250e+04],\n",
" [1.9700e+02, 1.6600e+04],\n",
" [1.9800e+02, 2.0250e+04],\n",
" [1.9900e+02, 2.2250e+04],\n",
" [2.0000e+02, 1.5600e+04],\n",
" [2.0100e+02, 2.0250e+04],\n",
" [2.0200e+02, 1.6600e+04],\n",
" [2.0300e+02, 5.4625e+04],\n",
" [2.0400e+02, 1.6600e+04],\n",
" [2.0500e+02, 1.6600e+04],\n",
" [2.0600e+02, 2.2250e+04],\n",
" [2.0700e+02, 1.9250e+04],\n",
" [2.0800e+02, 1.9250e+04],\n",
" [2.0900e+02, 1.9250e+04],\n",
" [2.1000e+02, 2.2250e+04],\n",
" [2.1100e+02, 1.5600e+04],\n",
" [2.1200e+02, 2.2250e+04],\n",
" [2.1300e+02, 1.5600e+04],\n",
" [2.1400e+02, 1.6600e+04],\n",
" [2.1500e+02, 2.2250e+04],\n",
" [2.1600e+02, 2.2250e+04],\n",
" [2.1700e+02, 1.6600e+04],\n",
" [2.1800e+02, 2.0750e+04],\n",
" [2.1900e+02, 1.9250e+04],\n",
" [2.2000e+02, 1.6600e+04],\n",
" [2.2100e+02, nan],\n",
" [2.2200e+02, 1.6600e+04],\n",
" [2.2300e+02, 2.2250e+04],\n",
" [2.2400e+02, 1.9250e+04],\n",
" [2.2500e+02, 1.6600e+04],\n",
" [2.2600e+02, 1.6600e+04],\n",
" [2.2700e+02, 1.9250e+04],\n",
" [2.2800e+02, 1.9250e+04],\n",
" [2.2900e+02, 1.6600e+04],\n",
" [2.3000e+02, 2.0250e+04],\n",
" [2.3100e+02, 2.2250e+04],\n",
" [2.3200e+02, 1.5600e+04],\n",
" [2.3300e+02, 1.6600e+04],\n",
" [2.3400e+02, 1.6600e+04],\n",
" [2.3500e+02, 5.4625e+04],\n",
" [2.3600e+02, 1.9250e+04],\n",
" [2.3700e+02, 2.2250e+04],\n",
" [2.3800e+02, 1.6600e+04],\n",
" [2.3900e+02, 2.2250e+04],\n",
" [2.4000e+02, 1.9250e+04],\n",
" [2.4100e+02, 1.9250e+04],\n",
" [2.4200e+02, 2.0750e+04],\n",
" [2.4300e+02, 2.0750e+04],\n",
" [2.4400e+02, 1.6600e+04],\n",
" [2.4500e+02, 1.6600e+04],\n",
" [2.4600e+02, 2.2250e+04],\n",
" [2.4700e+02, 1.6600e+04],\n",
" [2.4800e+02, 1.6600e+04],\n",
" [2.4900e+02, 1.6600e+04],\n",
" [2.5000e+02, 1.6600e+04],\n",
" [2.5100e+02, 1.5600e+04],\n",
" [2.5200e+02, 1.9250e+04],\n",
" [2.5300e+02, 2.0250e+04],\n",
" [2.5400e+02, 2.2250e+04],\n",
" [2.5500e+02, 1.9250e+04],\n",
" [2.5600e+02, 2.2250e+04],\n",
" [2.5700e+02, 2.2250e+04],\n",
" [2.5800e+02, 2.2250e+04],\n",
" [2.5900e+02, 1.6600e+04],\n",
" [2.6000e+02, 2.0250e+04],\n",
" [2.6100e+02, 1.6600e+04],\n",
" [2.6200e+02, 1.6600e+04],\n",
" [2.6300e+02, 1.6600e+04],\n",
" [2.6400e+02, 1.9250e+04],\n",
" [2.6500e+02, 1.6600e+04],\n",
" [2.6600e+02, 1.6600e+04],\n",
" [2.6700e+02, 1.5600e+04],\n",
" [2.6800e+02, 1.6600e+04],\n",
" [2.6900e+02, 2.2250e+04],\n",
" [2.7000e+02, 1.9250e+04],\n",
" [2.7100e+02, nan],\n",
" [2.7200e+02, 2.2250e+04],\n",
" [2.7300e+02, 1.5600e+04],\n",
" [2.7400e+02, 1.5600e+04],\n",
" [2.7500e+02, 1.6600e+04],\n",
" [2.7600e+02, 1.9250e+04],\n",
" [2.7700e+02, 1.6600e+04],\n",
" [2.7800e+02, 5.4625e+04],\n",
" [2.7900e+02, 1.6600e+04],\n",
" [2.8000e+02, 1.6600e+04],\n",
" [2.8100e+02, 1.6600e+04],\n",
" [2.8200e+02, 1.9250e+04],\n",
" [2.8300e+02, 2.2250e+04],\n",
" [2.8400e+02, 2.2250e+04],\n",
" [2.8500e+02, 1.6600e+04],\n",
" [2.8600e+02, 1.9250e+04],\n",
" [2.8700e+02, 1.9250e+04],\n",
" [2.8800e+02, 1.5600e+04],\n",
" [2.8900e+02, 5.4625e+04],\n",
" [2.9000e+02, 1.6600e+04],\n",
" [2.9100e+02, 1.6600e+04],\n",
" [2.9200e+02, 1.5600e+04],\n",
" [2.9300e+02, 2.0250e+04],\n",
" [2.9400e+02, 1.9250e+04],\n",
" [2.9500e+02, 1.9250e+04],\n",
" [2.9600e+02, 1.5600e+04],\n",
" [2.9700e+02, 1.5600e+04],\n",
" [2.9800e+02, 1.9250e+04],\n",
" [2.9900e+02, 1.6600e+04],\n",
" [3.0000e+02, 2.0250e+04],\n",
" [3.0100e+02, 2.0750e+04],\n",
" [3.0200e+02, 1.6600e+04],\n",
" [3.0300e+02, 1.6600e+04],\n",
" [3.0400e+02, 1.6600e+04],\n",
" [3.0500e+02, 2.2250e+04],\n",
" [3.0600e+02, 1.6600e+04],\n",
" [3.0700e+02, 2.2250e+04],\n",
" [3.0800e+02, 2.0250e+04],\n",
" [3.0900e+02, 1.6600e+04],\n",
" [3.1000e+02, 1.9250e+04],\n",
" [3.1100e+02, 2.2250e+04],\n",
" [3.1200e+02, 1.6600e+04],\n",
" [3.1300e+02, 1.5600e+04],\n",
" [3.1400e+02, 1.6600e+04],\n",
" [3.1500e+02, 1.6600e+04],\n",
" [3.1600e+02, 1.5600e+04],\n",
" [3.1700e+02, 1.6600e+04],\n",
" [3.1800e+02, 2.0250e+04],\n",
" [3.1900e+02, 1.9250e+04],\n",
" [3.2000e+02, 2.0250e+04],\n",
" [3.2100e+02, 1.6600e+04],\n",
" [3.2200e+02, 2.2250e+04],\n",
" [3.2300e+02, 1.6600e+04],\n",
" [3.2400e+02, 2.2250e+04],\n",
" [3.2500e+02, 2.2250e+04],\n",
" [3.2600e+02, 1.9250e+04],\n",
" [3.2700e+02, 5.4625e+04],\n",
" [3.2800e+02, 1.3775e+04],\n",
" [3.2900e+02, 1.6600e+04],\n",
" [3.3000e+02, 1.6600e+04],\n",
" [3.3100e+02, nan],\n",
" [3.3200e+02, 2.0750e+04],\n",
" [3.3300e+02, 1.6600e+04],\n",
" [3.3400e+02, 1.9250e+04],\n",
" [3.3500e+02, 2.2250e+04],\n",
" [3.3600e+02, 2.0250e+04],\n",
" [3.3700e+02, 2.2250e+04],\n",
" [3.3800e+02, 1.9250e+04],\n",
" [3.3900e+02, 1.6600e+04],\n",
" [3.4000e+02, 1.5600e+04],\n",
" [3.4100e+02, 2.0250e+04],\n",
" [3.4200e+02, 2.2250e+04],\n",
" [3.4300e+02, 2.2250e+04],\n",
" [3.4400e+02, 1.6600e+04],\n",
" [3.4500e+02, 2.2250e+04],\n",
" [3.4600e+02, 2.0250e+04],\n",
" [3.4700e+02, 1.6600e+04],\n",
" [3.4800e+02, 2.2250e+04],\n",
" [3.4900e+02, 1.9250e+04],\n",
" [3.5000e+02, 1.6600e+04],\n",
" [3.5100e+02, 1.6600e+04],\n",
" [3.5200e+02, 1.5600e+04],\n",
" [3.5300e+02, 1.9250e+04],\n",
" [3.5400e+02, 1.6600e+04],\n",
" [3.5500e+02, 2.0250e+04],\n",
" [3.5600e+02, 1.6600e+04],\n",
" [3.5700e+02, 2.2250e+04],\n",
" [3.5800e+02, 1.6600e+04],\n",
" [3.5900e+02, 1.5600e+04],\n",
" [3.6000e+02, 2.0250e+04],\n",
" [3.6100e+02, 2.2250e+04],\n",
" [3.6200e+02, 2.0250e+04],\n",
" [3.6300e+02, 1.6600e+04],\n",
" [3.6400e+02, 2.2250e+04],\n",
" [3.6500e+02, 1.6600e+04],\n",
" [3.6600e+02, 1.6600e+04],\n",
" [3.6700e+02, 1.6600e+04],\n",
" [3.6800e+02, 2.0250e+04],\n",
" [3.6900e+02, 1.6600e+04],\n",
" [3.7000e+02, 1.6600e+04],\n",
" [3.7100e+02, 1.6600e+04],\n",
" [3.7200e+02, 1.9250e+04],\n",
" [3.7300e+02, 2.0250e+04],\n",
" [3.7400e+02, 1.6600e+04],\n",
" [3.7500e+02, 1.6600e+04],\n",
" [3.7600e+02, 2.2250e+04],\n",
" [3.7700e+02, 1.9250e+04],\n",
" [3.7800e+02, 2.2250e+04],\n",
" [3.7900e+02, 1.6600e+04],\n",
" [3.8000e+02, 1.9250e+04],\n",
" [3.8100e+02, nan],\n",
" [3.8200e+02, 2.0250e+04],\n",
" [3.8300e+02, 2.0750e+04],\n",
" [3.8400e+02, 1.6600e+04],\n",
" [3.8500e+02, 1.6600e+04],\n",
" [3.8600e+02, 1.6600e+04],\n",
" [3.8700e+02, 1.6600e+04],\n",
" [3.8800e+02, 2.0250e+04],\n",
" [3.8900e+02, 1.6600e+04],\n",
" [3.9000e+02, 2.2250e+04],\n",
" [3.9100e+02, 1.5600e+04],\n",
" [3.9200e+02, 1.6600e+04],\n",
" [3.9300e+02, 1.6600e+04],\n",
" [3.9400e+02, 1.5600e+04],\n",
" [3.9500e+02, 1.6600e+04],\n",
" [3.9600e+02, 1.5600e+04],\n",
" [3.9700e+02, 1.9250e+04],\n",
" [3.9800e+02, 2.0250e+04],\n",
" [3.9900e+02, 1.6600e+04],\n",
" [4.0000e+02, 1.6600e+04],\n",
" [4.0100e+02, 1.6600e+04],\n",
" [4.0200e+02, 1.6600e+04],\n",
" [4.0300e+02, 1.5600e+04],\n",
" [4.0400e+02, 1.6600e+04],\n",
" [4.0500e+02, 1.9250e+04],\n",
" [4.0600e+02, 1.6600e+04],\n",
" [4.0700e+02, 2.0250e+04],\n",
" [4.0800e+02, 2.0250e+04],\n",
" [4.0900e+02, 6.9225e+04],\n",
" [4.1000e+02, 1.5600e+04],\n",
" [4.1100e+02, 1.6600e+04],\n",
" [4.1200e+02, 1.6600e+04],\n",
" [4.1300e+02, 1.6600e+04],\n",
" [4.1400e+02, 1.5600e+04],\n",
" [4.1500e+02, 2.2250e+04]])"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lending_co_TP = np.genfromtxt(\"Lending-Company-Total-Price.csv\", \n",
" # # A)\n",
" # dtype = np.int32, # B)\n",
" # dtype = np.float32, # C)\n",
" # dtype = np.complex64, # D)\n",
" # dtype = np.unicode, # E)\n",
" # dtype = np.objects, # F)\n",
" # dype = None # G)\n",
" delimiter = ',',\n",
" skip_header = 1, \n",
" usecols = (0,-1),\n",
" )\n",
"lending_co_TP"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 16. Setting the datatype to None means the function automatically chooses the datatype for each column of the text file, so let's see how this works for all the columns."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:3: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default.\n",
" This is separate from the ipykernel package so we can avoid doing imports until\n"
]
},
{
"data": {
"text/plain": [
"array([[b'LoanID', b'StringID', b'Product', ..., b'Location', b'Region',\n",
" b'TotalPrice'],\n",
" [b'1', b'id_1', b'Product B', ..., b'Location 2', b'Region 2',\n",
" b'16600'],\n",
" [b'2', b'id_2', b'Product B', ..., b'Location 3', b'', b'16600'],\n",
" ...,\n",
" [b'413', b'id_413', b'Product B', ..., b'Location 135',\n",
" b'Region 1', b'16600'],\n",
" [b'414', b'id_414', b'Product C', ..., b'Location 200',\n",
" b'Region 6', b'15600'],\n",
" [b'415', b'id_415', b'Product A', ..., b'Location 8', b'Region 2',\n",
" b'22250']], dtype='|S14')"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lending_co_TP = np.genfromtxt(\"Lending-Company-Total-Price.csv\", \n",
" delimiter = ',',\n",
" dtype = None, \n",
" )\n",
"lending_co_TP"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}