{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# NumPy DataTypes" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. With the help of the np.array() function, create a 1-D array variable array_hw_1 with the numbers from 1 to 8 and display it on the screen." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1, 2, 3, 4, 5, 6, 7, 8])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "array_hw_1 = np.array([1,2,3,4,5,6,7,8])\n", "array_hw_1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.Check its type, shape and size. \n", " (Hint : \"type\" is a Python function, while \"shape\" and \"size\" are attributes of the array) " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "numpy.ndarray" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(array_hw_1)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(8,)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "array_hw_1.shape" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "8" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "array_hw_1.size" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3. Now, create a 2x4 2-D array, array_hw_2 with the same values & display it on screen. " ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[1, 2, 3, 4],\n", " [5, 6, 7, 8]])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "array_hw_2 = np.array([[1,2,3,4],[5,6,7,8]])\n", "array_hw_2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 4. Find its type, shape, and size. " ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "numpy.ndarray" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(array_hw_2)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2, 4)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "array_hw_2.shape" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "8" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "array_hw_2.size" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 5. Use square brackets to create a 3-D array with the same values as array_hw_2 and display it on screen." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[[1, 2, 3, 4],\n", " [5, 6, 7, 8]]])" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "array_hw_3 = np.array([[[1,2,3,4],[5,6,7,8]]])\n", "array_hw_3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 6. Find its type, shape and size. \n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "numpy.ndarray" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(array_hw_3)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1, 2, 4)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "array_hw_3.shape" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "8" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "array_hw_3.size" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 7. Define a 2-D list list_hw_1 with the same values as array_hw_2 and display it on screen." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[[1, 2, 3, 4], [5, 6, 7, 8]]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list_hw_1 = [[1,2,3,4],[5,6,7,8]]\n", "list_hw_1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 8. Find the length of this 2-D list. " ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(list_hw_1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 9. Fint the length of one of its sublists. " ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(list_hw_1[0])\n", "#len(list_hw_1[1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 10. Verify its type. " ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "list" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(list_hw_1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 11. Use the np.array() function to create an array out of list_hw_1 and display it on screen." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "array_hw_4 = np.array(list_hw_1)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[1, 2, 3, 4],\n", " [5, 6, 7, 8]])" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "array_hw_4" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 12. Create two more variables and display them on screen:\n", " A) A list which is the sum of the two sublists of list_hw_1;\n", " B) An array which is the sum of the two subarrays of array_hw_4;\n", " \n", " (Hint: Use indexing to refer to the different sub-lists/arrays)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "list_sum = list_hw_1[0] + list_hw_1[1]" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "array_sum = array_hw_4[0] + array_hw_4[1]" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[1, 2, 3, 4, 5, 6, 7, 8]" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list_sum" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 6, 8, 10, 12])" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "array_sum" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 13. Find the square roots of all the elements in array_sum \n", " (Hint: Use the np.sqrt() function)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([2.44948974, 2.82842712, 3.16227766, 3.46410162])" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sqrt(array_sum)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 13. Find the square roots of all the elements in list_sum \n", " (Hint: Most NumPy functions are equipped to handle lists like ndarrays with the same shape)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "array([1. , 1.41421356, 1.73205081, 2. , 2.23606798,\n", " 2.44948974, 2.64575131, 2.82842712])" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sqrt(list_sum)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 14. Use np.genfromtxt() to import the \"Lending-Company-Total-Price.csv\" file as strings and display its contents.\n", " You can open the file in a text editor like Notepad++ to check its delimiter. " ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([['LoanID', 'StringID', 'Product', ..., 'Location', 'Region',\n", " 'TotalPrice'],\n", " ['1', 'id_1', 'Product B', ..., 'Location 2', 'Region 2', '16600'],\n", " ['2', 'id_2', 'Product B', ..., 'Location 3', '', '16600'],\n", " ...,\n", " ['413', 'id_413', 'Product B', ..., 'Location 135', 'Region 1',\n", " '16600'],\n", " ['414', 'id_414', 'Product C', ..., 'Location 200', 'Region 6',\n", " '15600'],\n", " ['415', 'id_415', 'Product A', ..., 'Location 8', 'Region 2',\n", " '22250']], dtype=' skip_header and usecols parameters to only take the numerical data from the file. Then, let's see how the inputs change if we alter the datatype argument to:\n", "\n", " A) The default (not specify it)\n", " B) 32-bit integers (np.int32)\n", " C) 32-bit floats (np.float32)\n", " D) 64-bit complex numbers (np.complex64)\n", " E) Unicode (np.unicode)\n", " F) Objects (np.object)\n", " G) None" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[1.0000e+00, 1.6600e+04],\n", " [2.0000e+00, 1.6600e+04],\n", " [3.0000e+00, 1.5600e+04],\n", " [4.0000e+00, 1.6600e+04],\n", " [5.0000e+00, 2.0250e+04],\n", " [6.0000e+00, nan],\n", " [7.0000e+00, 2.0250e+04],\n", " [8.0000e+00, 1.6600e+04],\n", " [9.0000e+00, 2.2250e+04],\n", " [1.0000e+01, 2.0250e+04],\n", " [1.1000e+01, 1.6600e+04],\n", " [1.2000e+01, 2.0250e+04],\n", " [1.3000e+01, 1.6600e+04],\n", " [1.4000e+01, 2.0750e+04],\n", " [1.5000e+01, 2.2250e+04],\n", " [1.6000e+01, 1.6600e+04],\n", " [1.7000e+01, 2.2250e+04],\n", " [1.8000e+01, 1.6600e+04],\n", " [1.9000e+01, 1.6600e+04],\n", " [2.0000e+01, 5.4625e+04],\n", " [2.1000e+01, 1.6600e+04],\n", " [2.2000e+01, 2.2250e+04],\n", " [2.3000e+01, 1.9250e+04],\n", " [2.4000e+01, 1.5600e+04],\n", " [2.5000e+01, 2.0250e+04],\n", " [2.6000e+01, 2.2250e+04],\n", " [2.7000e+01, 1.9250e+04],\n", " [2.8000e+01, 6.9225e+04],\n", " [2.9000e+01, 2.0250e+04],\n", " [3.0000e+01, 1.6600e+04],\n", " [3.1000e+01, 1.6600e+04],\n", " [3.2000e+01, 1.6600e+04],\n", " [3.3000e+01, 1.9250e+04],\n", " [3.4000e+01, 1.6600e+04],\n", " [3.5000e+01, 1.9250e+04],\n", " [3.6000e+01, 1.6600e+04],\n", " [3.7000e+01, 1.6600e+04],\n", " [3.8000e+01, 1.6600e+04],\n", " [3.9000e+01, 1.5600e+04],\n", " [4.0000e+01, 1.6600e+04],\n", " [4.1000e+01, 1.6600e+04],\n", " [4.2000e+01, 1.6600e+04],\n", " [4.3000e+01, 1.9250e+04],\n", " [4.4000e+01, 1.5600e+04],\n", " [4.5000e+01, 1.9250e+04],\n", " [4.6000e+01, 1.6600e+04],\n", " [4.7000e+01, 1.6600e+04],\n", " [4.8000e+01, 1.6600e+04],\n", " [4.9000e+01, 2.0250e+04],\n", " [5.0000e+01, 2.2250e+04],\n", " [5.1000e+01, 1.6600e+04],\n", " [5.2000e+01, 2.0250e+04],\n", " [5.3000e+01, 2.0250e+04],\n", " [5.4000e+01, 1.6600e+04],\n", " [5.5000e+01, 1.6600e+04],\n", " [5.6000e+01, 1.6600e+04],\n", " [5.7000e+01, nan],\n", " [5.8000e+01, 1.6600e+04],\n", " [5.9000e+01, 1.6600e+04],\n", " [6.0000e+01, 1.6600e+04],\n", " [6.1000e+01, 1.9250e+04],\n", " [6.2000e+01, 1.5600e+04],\n", " [6.3000e+01, 1.5600e+04],\n", " [6.4000e+01, 2.0250e+04],\n", " [6.5000e+01, 1.6600e+04],\n", " [6.6000e+01, 2.2250e+04],\n", " [6.7000e+01, 2.2250e+04],\n", " [6.8000e+01, 2.0250e+04],\n", " [6.9000e+01, 2.0250e+04],\n", " [7.0000e+01, 1.6600e+04],\n", " [7.1000e+01, 1.5600e+04],\n", " [7.2000e+01, 1.6600e+04],\n", " [7.3000e+01, 1.6600e+04],\n", " [7.4000e+01, 2.2250e+04],\n", " [7.5000e+01, 2.0750e+04],\n", " [7.6000e+01, 2.2250e+04],\n", " [7.7000e+01, 1.9250e+04],\n", " [7.8000e+01, 2.0250e+04],\n", " [7.9000e+01, 2.0250e+04],\n", " [8.0000e+01, 2.0250e+04],\n", " [8.1000e+01, 1.9250e+04],\n", " [8.2000e+01, 1.6600e+04],\n", " [8.3000e+01, 2.2250e+04],\n", " [8.4000e+01, 2.0250e+04],\n", " [8.5000e+01, 1.6600e+04],\n", " [8.6000e+01, 1.9250e+04],\n", " [8.7000e+01, 2.2250e+04],\n", " [8.8000e+01, 1.6600e+04],\n", " [8.9000e+01, 1.9250e+04],\n", " [9.0000e+01, 1.6600e+04],\n", " [9.1000e+01, nan],\n", " [9.2000e+01, 2.0250e+04],\n", " [9.3000e+01, 1.6600e+04],\n", " [9.4000e+01, 1.6600e+04],\n", " [9.5000e+01, 1.9250e+04],\n", " [9.6000e+01, 1.6600e+04],\n", " [9.7000e+01, 1.6600e+04],\n", " [9.8000e+01, 2.2250e+04],\n", " [9.9000e+01, 2.2250e+04],\n", " [1.0000e+02, 1.6600e+04],\n", " [1.0100e+02, 1.6600e+04],\n", " [1.0200e+02, 1.9250e+04],\n", " [1.0300e+02, 1.6600e+04],\n", " [1.0400e+02, 2.2250e+04],\n", " [1.0500e+02, 1.9250e+04],\n", " [1.0600e+02, 1.6600e+04],\n", " [1.0700e+02, 1.6600e+04],\n", " [1.0800e+02, 1.9250e+04],\n", " [1.0900e+02, 1.6600e+04],\n", " [1.1000e+02, 2.2250e+04],\n", " [1.1100e+02, 1.6600e+04],\n", " [1.1200e+02, 1.5600e+04],\n", " [1.1300e+02, 1.6600e+04],\n", " [1.1400e+02, 2.0250e+04],\n", " [1.1500e+02, 1.6600e+04],\n", " [1.1600e+02, 1.9250e+04],\n", " [1.1700e+02, 1.9250e+04],\n", " [1.1800e+02, 1.9250e+04],\n", " [1.1900e+02, 1.5600e+04],\n", " [1.2000e+02, 2.2250e+04],\n", " [1.2100e+02, 2.2250e+04],\n", " [1.2200e+02, 1.6600e+04],\n", " [1.2300e+02, 2.0250e+04],\n", " [1.2400e+02, 1.6600e+04],\n", " [1.2500e+02, 1.6600e+04],\n", " [1.2600e+02, 2.0750e+04],\n", " [1.2700e+02, 2.0250e+04],\n", " [1.2800e+02, 1.6600e+04],\n", " [1.2900e+02, 1.6600e+04],\n", " [1.3000e+02, 1.6600e+04],\n", " [1.3100e+02, 1.5600e+04],\n", " [1.3200e+02, 1.6600e+04],\n", " [1.3300e+02, 1.5600e+04],\n", " [1.3400e+02, 1.9250e+04],\n", " [1.3500e+02, 1.6600e+04],\n", " [1.3600e+02, 1.6600e+04],\n", " [1.3700e+02, 2.0250e+04],\n", " [1.3800e+02, 1.9250e+04],\n", " [1.3900e+02, 1.5600e+04],\n", " [1.4000e+02, 1.6600e+04],\n", " [1.4100e+02, 1.6600e+04],\n", " [1.4200e+02, 1.6600e+04],\n", " [1.4300e+02, 1.5600e+04],\n", " [1.4400e+02, 1.6600e+04],\n", " [1.4500e+02, 1.5600e+04],\n", " [1.4600e+02, 1.9250e+04],\n", " [1.4700e+02, 2.2250e+04],\n", " [1.4800e+02, 2.0250e+04],\n", " [1.4900e+02, 1.9250e+04],\n", " [1.5000e+02, 2.2250e+04],\n", " [1.5100e+02, 1.6600e+04],\n", " [1.5200e+02, 2.2250e+04],\n", " [1.5300e+02, 5.4625e+04],\n", " [1.5400e+02, 5.4625e+04],\n", " [1.5500e+02, 1.6600e+04],\n", " [1.5600e+02, 2.2250e+04],\n", " [1.5700e+02, 2.2250e+04],\n", " [1.5800e+02, 2.2250e+04],\n", " [1.5900e+02, 2.2250e+04],\n", " [1.6000e+02, 1.5600e+04],\n", " [1.6100e+02, nan],\n", " [1.6200e+02, 1.6600e+04],\n", " [1.6300e+02, 2.2250e+04],\n", " [1.6400e+02, 2.0250e+04],\n", " [1.6500e+02, 2.2250e+04],\n", " [1.6600e+02, 1.6600e+04],\n", " [1.6700e+02, 1.9250e+04],\n", " [1.6800e+02, 2.0250e+04],\n", " [1.6900e+02, 1.6600e+04],\n", " [1.7000e+02, 2.0250e+04],\n", " [1.7100e+02, 1.6600e+04],\n", " [1.7200e+02, 1.6600e+04],\n", " [1.7300e+02, 2.0250e+04],\n", " [1.7400e+02, 2.0250e+04],\n", " [1.7500e+02, 1.6600e+04],\n", " [1.7600e+02, 2.0250e+04],\n", " [1.7700e+02, 1.9250e+04],\n", " [1.7800e+02, 1.6600e+04],\n", " [1.7900e+02, 2.0750e+04],\n", " [1.8000e+02, 2.0250e+04],\n", " [1.8100e+02, 2.2250e+04],\n", " [1.8200e+02, 1.6600e+04],\n", " [1.8300e+02, 2.0250e+04],\n", " [1.8400e+02, 2.0250e+04],\n", " [1.8500e+02, 1.6600e+04],\n", " [1.8600e+02, 2.0250e+04],\n", " [1.8700e+02, 2.0750e+04],\n", " [1.8800e+02, 1.6600e+04],\n", " [1.8900e+02, 1.6600e+04],\n", " [1.9000e+02, 2.2250e+04],\n", " [1.9100e+02, 2.2250e+04],\n", " [1.9200e+02, 2.2250e+04],\n", " [1.9300e+02, 1.6600e+04],\n", " [1.9400e+02, 5.4625e+04],\n", " [1.9500e+02, 1.6600e+04],\n", " [1.9600e+02, 2.2250e+04],\n", " [1.9700e+02, 1.6600e+04],\n", " [1.9800e+02, 2.0250e+04],\n", " [1.9900e+02, 2.2250e+04],\n", " [2.0000e+02, 1.5600e+04],\n", " [2.0100e+02, 2.0250e+04],\n", " [2.0200e+02, 1.6600e+04],\n", " [2.0300e+02, 5.4625e+04],\n", " [2.0400e+02, 1.6600e+04],\n", " [2.0500e+02, 1.6600e+04],\n", " [2.0600e+02, 2.2250e+04],\n", " [2.0700e+02, 1.9250e+04],\n", " [2.0800e+02, 1.9250e+04],\n", " [2.0900e+02, 1.9250e+04],\n", " [2.1000e+02, 2.2250e+04],\n", " [2.1100e+02, 1.5600e+04],\n", " [2.1200e+02, 2.2250e+04],\n", " [2.1300e+02, 1.5600e+04],\n", " [2.1400e+02, 1.6600e+04],\n", " [2.1500e+02, 2.2250e+04],\n", " [2.1600e+02, 2.2250e+04],\n", " [2.1700e+02, 1.6600e+04],\n", " [2.1800e+02, 2.0750e+04],\n", " [2.1900e+02, 1.9250e+04],\n", " [2.2000e+02, 1.6600e+04],\n", " [2.2100e+02, nan],\n", " [2.2200e+02, 1.6600e+04],\n", " [2.2300e+02, 2.2250e+04],\n", " [2.2400e+02, 1.9250e+04],\n", " [2.2500e+02, 1.6600e+04],\n", " [2.2600e+02, 1.6600e+04],\n", " [2.2700e+02, 1.9250e+04],\n", " [2.2800e+02, 1.9250e+04],\n", " [2.2900e+02, 1.6600e+04],\n", " [2.3000e+02, 2.0250e+04],\n", " [2.3100e+02, 2.2250e+04],\n", " [2.3200e+02, 1.5600e+04],\n", " [2.3300e+02, 1.6600e+04],\n", " [2.3400e+02, 1.6600e+04],\n", " [2.3500e+02, 5.4625e+04],\n", " [2.3600e+02, 1.9250e+04],\n", " [2.3700e+02, 2.2250e+04],\n", " [2.3800e+02, 1.6600e+04],\n", " [2.3900e+02, 2.2250e+04],\n", " [2.4000e+02, 1.9250e+04],\n", " [2.4100e+02, 1.9250e+04],\n", " [2.4200e+02, 2.0750e+04],\n", " [2.4300e+02, 2.0750e+04],\n", " [2.4400e+02, 1.6600e+04],\n", " [2.4500e+02, 1.6600e+04],\n", " [2.4600e+02, 2.2250e+04],\n", " [2.4700e+02, 1.6600e+04],\n", " [2.4800e+02, 1.6600e+04],\n", " [2.4900e+02, 1.6600e+04],\n", " [2.5000e+02, 1.6600e+04],\n", " [2.5100e+02, 1.5600e+04],\n", " [2.5200e+02, 1.9250e+04],\n", " [2.5300e+02, 2.0250e+04],\n", " [2.5400e+02, 2.2250e+04],\n", " [2.5500e+02, 1.9250e+04],\n", " [2.5600e+02, 2.2250e+04],\n", " [2.5700e+02, 2.2250e+04],\n", " [2.5800e+02, 2.2250e+04],\n", " [2.5900e+02, 1.6600e+04],\n", " [2.6000e+02, 2.0250e+04],\n", " [2.6100e+02, 1.6600e+04],\n", " [2.6200e+02, 1.6600e+04],\n", " [2.6300e+02, 1.6600e+04],\n", " [2.6400e+02, 1.9250e+04],\n", " [2.6500e+02, 1.6600e+04],\n", " [2.6600e+02, 1.6600e+04],\n", " [2.6700e+02, 1.5600e+04],\n", " [2.6800e+02, 1.6600e+04],\n", " [2.6900e+02, 2.2250e+04],\n", " [2.7000e+02, 1.9250e+04],\n", " [2.7100e+02, nan],\n", " [2.7200e+02, 2.2250e+04],\n", " [2.7300e+02, 1.5600e+04],\n", " [2.7400e+02, 1.5600e+04],\n", " [2.7500e+02, 1.6600e+04],\n", " [2.7600e+02, 1.9250e+04],\n", " [2.7700e+02, 1.6600e+04],\n", " [2.7800e+02, 5.4625e+04],\n", " [2.7900e+02, 1.6600e+04],\n", " [2.8000e+02, 1.6600e+04],\n", " [2.8100e+02, 1.6600e+04],\n", " [2.8200e+02, 1.9250e+04],\n", " [2.8300e+02, 2.2250e+04],\n", " [2.8400e+02, 2.2250e+04],\n", " [2.8500e+02, 1.6600e+04],\n", " [2.8600e+02, 1.9250e+04],\n", " [2.8700e+02, 1.9250e+04],\n", " [2.8800e+02, 1.5600e+04],\n", " [2.8900e+02, 5.4625e+04],\n", " [2.9000e+02, 1.6600e+04],\n", " [2.9100e+02, 1.6600e+04],\n", " [2.9200e+02, 1.5600e+04],\n", " [2.9300e+02, 2.0250e+04],\n", " [2.9400e+02, 1.9250e+04],\n", " [2.9500e+02, 1.9250e+04],\n", " [2.9600e+02, 1.5600e+04],\n", " [2.9700e+02, 1.5600e+04],\n", " [2.9800e+02, 1.9250e+04],\n", " [2.9900e+02, 1.6600e+04],\n", " [3.0000e+02, 2.0250e+04],\n", " [3.0100e+02, 2.0750e+04],\n", " [3.0200e+02, 1.6600e+04],\n", " [3.0300e+02, 1.6600e+04],\n", " [3.0400e+02, 1.6600e+04],\n", " [3.0500e+02, 2.2250e+04],\n", " [3.0600e+02, 1.6600e+04],\n", " [3.0700e+02, 2.2250e+04],\n", " [3.0800e+02, 2.0250e+04],\n", " [3.0900e+02, 1.6600e+04],\n", " [3.1000e+02, 1.9250e+04],\n", " [3.1100e+02, 2.2250e+04],\n", " [3.1200e+02, 1.6600e+04],\n", " [3.1300e+02, 1.5600e+04],\n", " [3.1400e+02, 1.6600e+04],\n", " [3.1500e+02, 1.6600e+04],\n", " [3.1600e+02, 1.5600e+04],\n", " [3.1700e+02, 1.6600e+04],\n", " [3.1800e+02, 2.0250e+04],\n", " [3.1900e+02, 1.9250e+04],\n", " [3.2000e+02, 2.0250e+04],\n", " [3.2100e+02, 1.6600e+04],\n", " [3.2200e+02, 2.2250e+04],\n", " [3.2300e+02, 1.6600e+04],\n", " [3.2400e+02, 2.2250e+04],\n", " [3.2500e+02, 2.2250e+04],\n", " [3.2600e+02, 1.9250e+04],\n", " [3.2700e+02, 5.4625e+04],\n", " [3.2800e+02, 1.3775e+04],\n", " [3.2900e+02, 1.6600e+04],\n", " [3.3000e+02, 1.6600e+04],\n", " [3.3100e+02, nan],\n", " [3.3200e+02, 2.0750e+04],\n", " [3.3300e+02, 1.6600e+04],\n", " [3.3400e+02, 1.9250e+04],\n", " [3.3500e+02, 2.2250e+04],\n", " [3.3600e+02, 2.0250e+04],\n", " [3.3700e+02, 2.2250e+04],\n", " [3.3800e+02, 1.9250e+04],\n", " [3.3900e+02, 1.6600e+04],\n", " [3.4000e+02, 1.5600e+04],\n", " [3.4100e+02, 2.0250e+04],\n", " [3.4200e+02, 2.2250e+04],\n", " [3.4300e+02, 2.2250e+04],\n", " [3.4400e+02, 1.6600e+04],\n", " [3.4500e+02, 2.2250e+04],\n", " [3.4600e+02, 2.0250e+04],\n", " [3.4700e+02, 1.6600e+04],\n", " [3.4800e+02, 2.2250e+04],\n", " [3.4900e+02, 1.9250e+04],\n", " [3.5000e+02, 1.6600e+04],\n", " [3.5100e+02, 1.6600e+04],\n", " [3.5200e+02, 1.5600e+04],\n", " [3.5300e+02, 1.9250e+04],\n", " [3.5400e+02, 1.6600e+04],\n", " [3.5500e+02, 2.0250e+04],\n", " [3.5600e+02, 1.6600e+04],\n", " [3.5700e+02, 2.2250e+04],\n", " [3.5800e+02, 1.6600e+04],\n", " [3.5900e+02, 1.5600e+04],\n", " [3.6000e+02, 2.0250e+04],\n", " [3.6100e+02, 2.2250e+04],\n", " [3.6200e+02, 2.0250e+04],\n", " [3.6300e+02, 1.6600e+04],\n", " [3.6400e+02, 2.2250e+04],\n", " [3.6500e+02, 1.6600e+04],\n", " [3.6600e+02, 1.6600e+04],\n", " [3.6700e+02, 1.6600e+04],\n", " [3.6800e+02, 2.0250e+04],\n", " [3.6900e+02, 1.6600e+04],\n", " [3.7000e+02, 1.6600e+04],\n", " [3.7100e+02, 1.6600e+04],\n", " [3.7200e+02, 1.9250e+04],\n", " [3.7300e+02, 2.0250e+04],\n", " [3.7400e+02, 1.6600e+04],\n", " [3.7500e+02, 1.6600e+04],\n", " [3.7600e+02, 2.2250e+04],\n", " [3.7700e+02, 1.9250e+04],\n", " [3.7800e+02, 2.2250e+04],\n", " [3.7900e+02, 1.6600e+04],\n", " [3.8000e+02, 1.9250e+04],\n", " [3.8100e+02, nan],\n", " [3.8200e+02, 2.0250e+04],\n", " [3.8300e+02, 2.0750e+04],\n", " [3.8400e+02, 1.6600e+04],\n", " [3.8500e+02, 1.6600e+04],\n", " [3.8600e+02, 1.6600e+04],\n", " [3.8700e+02, 1.6600e+04],\n", " [3.8800e+02, 2.0250e+04],\n", " [3.8900e+02, 1.6600e+04],\n", " [3.9000e+02, 2.2250e+04],\n", " [3.9100e+02, 1.5600e+04],\n", " [3.9200e+02, 1.6600e+04],\n", " [3.9300e+02, 1.6600e+04],\n", " [3.9400e+02, 1.5600e+04],\n", " [3.9500e+02, 1.6600e+04],\n", " [3.9600e+02, 1.5600e+04],\n", " [3.9700e+02, 1.9250e+04],\n", " [3.9800e+02, 2.0250e+04],\n", " [3.9900e+02, 1.6600e+04],\n", " [4.0000e+02, 1.6600e+04],\n", " [4.0100e+02, 1.6600e+04],\n", " [4.0200e+02, 1.6600e+04],\n", " [4.0300e+02, 1.5600e+04],\n", " [4.0400e+02, 1.6600e+04],\n", " [4.0500e+02, 1.9250e+04],\n", " [4.0600e+02, 1.6600e+04],\n", " [4.0700e+02, 2.0250e+04],\n", " [4.0800e+02, 2.0250e+04],\n", " [4.0900e+02, 6.9225e+04],\n", " [4.1000e+02, 1.5600e+04],\n", " [4.1100e+02, 1.6600e+04],\n", " [4.1200e+02, 1.6600e+04],\n", " [4.1300e+02, 1.6600e+04],\n", " [4.1400e+02, 1.5600e+04],\n", " [4.1500e+02, 2.2250e+04]])" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lending_co_TP = np.genfromtxt(\"Lending-Company-Total-Price.csv\", \n", " # # A)\n", " # dtype = np.int32, # B)\n", " # dtype = np.float32, # C)\n", " # dtype = np.complex64, # D)\n", " # dtype = np.unicode, # E)\n", " # dtype = np.objects, # F)\n", " # dype = None # G)\n", " delimiter = ',',\n", " skip_header = 1, \n", " usecols = (0,-1),\n", " )\n", "lending_co_TP" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 16. Setting the datatype to None means the function automatically chooses the datatype for each column of the text file, so let's see how this works for all the columns." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:3: VisibleDeprecationWarning: Reading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default.\n", " This is separate from the ipykernel package so we can avoid doing imports until\n" ] }, { "data": { "text/plain": [ "array([[b'LoanID', b'StringID', b'Product', ..., b'Location', b'Region',\n", " b'TotalPrice'],\n", " [b'1', b'id_1', b'Product B', ..., b'Location 2', b'Region 2',\n", " b'16600'],\n", " [b'2', b'id_2', b'Product B', ..., b'Location 3', b'', b'16600'],\n", " ...,\n", " [b'413', b'id_413', b'Product B', ..., b'Location 135',\n", " b'Region 1', b'16600'],\n", " [b'414', b'id_414', b'Product C', ..., b'Location 200',\n", " b'Region 6', b'15600'],\n", " [b'415', b'id_415', b'Product A', ..., b'Location 8', b'Region 2',\n", " b'22250']], dtype='|S14')" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lending_co_TP = np.genfromtxt(\"Lending-Company-Total-Price.csv\", \n", " delimiter = ',',\n", " dtype = None, \n", " )\n", "lending_co_TP" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 2 }